

Ontology and Biomedical Informatics Rome, Italy – May 1, 2005

Lexical and Statistical Approaches to Acquiring Ontological Relations

Formal Methods for Casual Ontology?

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA

Introduction

- ◆ Biomedical ontologies
 - Precisely defined (e.g., formal ontology)
 - Limited size
 - Built manually
- ◆ Large amounts of knowledge
 - Not represented explicitly by symbolic relations
 - But expressed implicitly
 - By lexico-syntactic relations (i.e., embedded in terms)
 - By statistical relations (e.g., co-occurrence)
 - Can be extracted automatically

Formal vs. casual ontology

Formal ontology

- Provides a framework for building sound ontologies
- Too labor-intensive for building large ontologies

Casual ontology

- Usually unsuitable for reasoning
- Tools for automatic acquisition available

General framework

- Ontology learning
 - [Maedche & Staab, Velardi]
 - ECAI, IJCAI
- **♦** Term variation
- ◆ Terminology / Knowledge
- ◆ Knowledge acquisition/capture
- **♦** Information extraction

[Jacquemin]

TKE, TIA

K-CAP

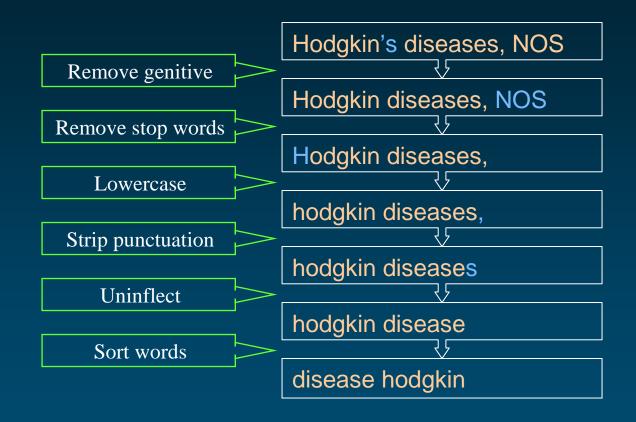
Sources of knowledge for casual ontology

- ◆ Long tradition of terminology building
 - Over 100 terminologies available in electronic format
- ◆ Large corpora available (e.g., MEDLINE)
 - Entity recognition tools available
 - E.g., MetaMap (UMLS-based)
 - Several for gene/protein names
 - Information extraction methods
- ◆ Large annotation databases available
 - MEDLINE citations indexed with MeSH
 - Model organism databases annotated with GO

Formal methods for casual ontology

- **♦** Lexico-syntactic methods
 - Lexico-syntactic patterns
 - Nominal modification
 - Prepositional phrases
 - Reified relations
 - Semantic interpretation
- ◆ Statistical methods
 - Clustering
 - Statistical analysis of co-occurrence data
 - Association rule mining

Lexico-syntactic methods


Synonymy

- ◆ Source: terminology
- ◆ Lexical similarity
 - Lexical variant generation program (UMLS)
 - norm
- **♦** Limitations
 - Clinical synonymy vs. Synonymy
 - Molecular biology

[McCray & al., SCAMC, 1994]

Normalization

Normalization Example

Hodgkin Disease HODGKINS DISEASE Hodgkin's Disease Disease, Hodgkin's Hodgkin's, disease HODGKIN'S DISEASE Hodgkin's disease Hodgkins Disease Hodgkin's disease NOS Hodgkin's disease, NOS Disease, Hodgkins Diseases, Hodgkins **Hodgkins Diseases** Hodgkins disease hodgkin's disease Disease, Hodgkin

normalize disease hodgkin

Taxonomic relations Lexico-syntactic patterns

- ◆ Source: text corpus
- **♦** Example of patterns
 - Lamivudin is a nucleoside analogue with potent antiviral properties.
 - The treatment of schizophrenia with old typical antipsychotic drugs such as haloperidol can be problematic.

[Hearst, COLING, 1992] [Fiszman & al., AMIA, 2003]

Taxonomic relations Nominal modification

- ◆ Source: text corpus / terminology
- ◆ Example of modifiers
 - Adjective
 - <u>Tuberculous</u> Addison's disease
 - Acute hepatitis
 - Noun (noun-noun compounds)
 - <u>Prostate</u> cancer
 - <u>Carbon monoxide</u> poisoning

Terminology: constrained environment (increased reliability)

[Jacquemin, ACL, 1999] [Bodenreider & al., TIA, 2001]

Reified relations

- ◆ Source: terminology
- ◆ Example: reification of part of

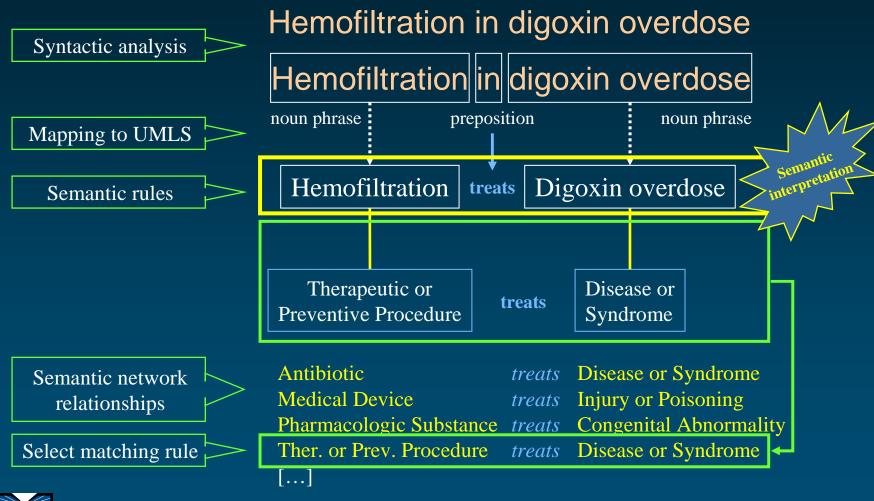
- ◆ Augmented relations from reified *part-of* relations
 - Reified: *Cardiac chamber*, *is-a*, *Subdivision of heart>*
 - Augmented: < Cardiac chamber, part-of, Heart>

[Zhang & al., ISWC/Sem. Int., 2003]

Prepositional attachment

- ◆ Source: text corpus / terminology
- ◆ Example: of
 - Lobe <u>of</u> lung \rightarrow part of Lung
 - Bone <u>of</u> femur \rightarrow part of Femur
- **♦** Restrictions
 - Validity of preposition-to-relation correspondence may be limited to a subdomain (e.g., anatomy)
 - Not applicable to complex terms
 - Groove for arch of aorta \rightarrow NOT part of Aorta

[Zhang & al., ISWC/Sem. Int., 2003]


Semantic interpretation

- ◆ Source: text corpus / terminology
- ◆ Correspondence between
 - Linguistic phenomena
 - Semantic relations
- ◆ Semantic constraints provided by ontologies

[Navigli & al., TKE, 2002] [Romacker, AIME, 2001] [Rindflesch & al., JBI, 2003]

Semantic interpretation

Compositional features of terms

♦ Lexical items

[Baud & al., AMIA, 1998]

- ◆ Terms within a vocabulary
 - Clinical vocabularies
 - Gene Ontology
- **♦** Terms across vocabularies
 - SNOMED / LOINC
 - GO / ChEBI
- ◆ Lexicon / Terms
 - Semantic lexicon

[McDonald & al., AMIA, 1999]

[Ogren & al., PSB, 2004] [Mungall, CFG, 2004]

[Dolin, JAMIA, 1998]

[Burgun, SMBM, 2005]

[Johnson, JAMIA, 1999] [Verspoor, CFG, 2005]

Statistical methods

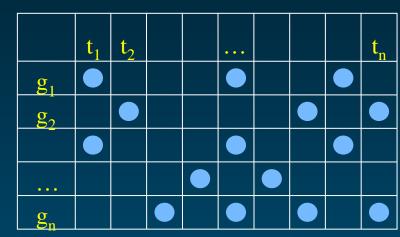
Taxonomic relations Clustering

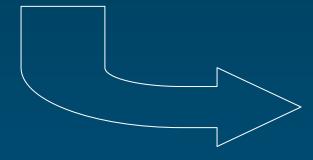
- ◆ Source: text corpus
- ◆ Principle: similarity between words reflected in their contexts
 - Co-occurring words (+ frequencies)
 - Hierarchical clustering algorithms
 - Similarity measure (cosine, Kullback Leibler)
- Can be refined using classification techniques (e.g., k nearest neighbors)

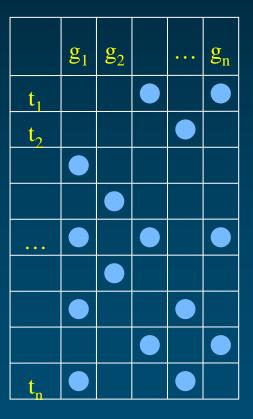
[Faure & al., LREC, 1998] [Maedche & al., HoO, 2004]

Associative relations

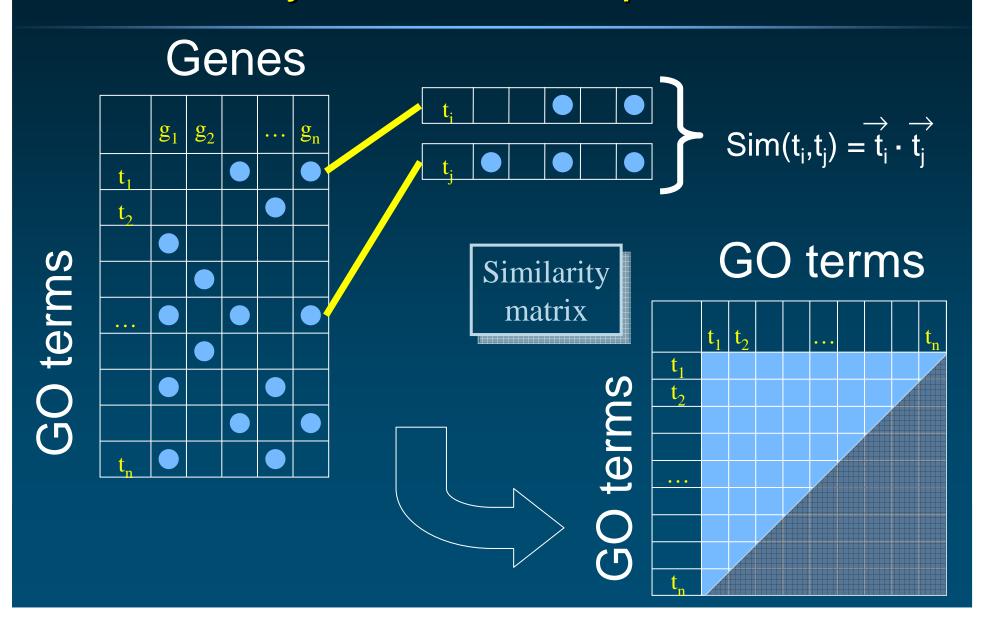
- ◆ Source: text corpus / annotation databases
- ◆ Principle: dependence relations
 - Associations between terms
- ◆ Several methods
 - Vector space model
 - Co-occuring terms
 - Association rule mining
- ◆ Limitations: no semantics

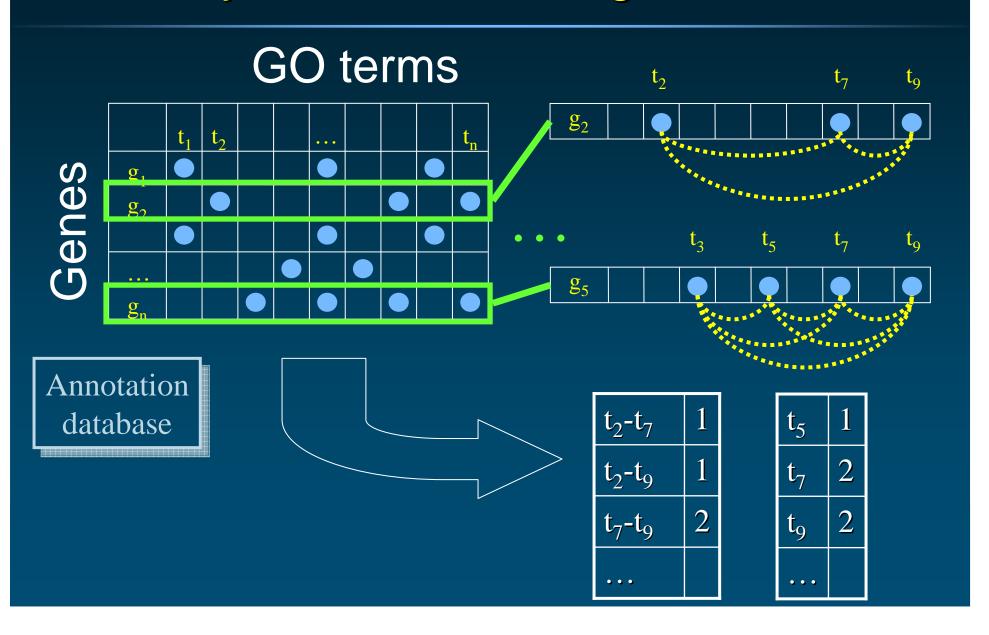

[Bodenreider & al., PSB, 2005]


Similarity in the vector space model


Genes

Annotation database


Genes



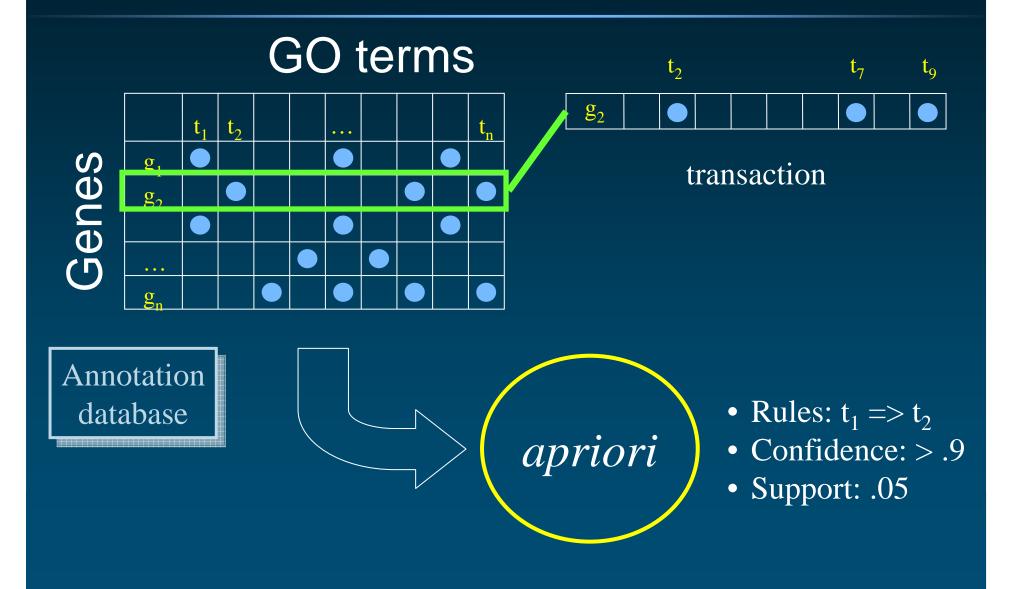
GO terms

Similarity in the vector space model

Analysis of co-occurring GO terms

Analysis of co-occurring GO terms

- ◆ Statistical analysis: test independence
 - Likelihood ratio test (G²)
 - Chi-square test (Pearson's χ²)
- ◆ Example from GOA (22,720 annotations)


GO:0008009 immune response

GO:0006955 chemokine activity

	present	absent	Total
present	46	542	588
absent	7	21,583	22,132
total	53	22,125	22,720

$$G^2 = 298.7$$

p < 0.000

Association rule mining

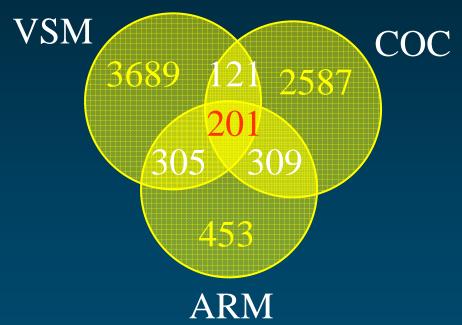
Example of associations (GO)

- ◆ Vector space model
 - MF: ice binding
 - BP: response to freezing
- ◆ Co-occurring terms
 - MF: chromatin binding
 - CC: nuclear chromatin
- ◆ Association rule mining
 - MF: carboxypeptidase A activity
 - BP: peptolysis and peptidolysis

Discussion and Conclusions

Combine methods

- ◆ Affordable relations
 - Computer-intensive, not labor-intensive
- Methods must be combined
 - Cross-validation
 - Redundancy as a surrogate for reliability
 - Relations identified specifically by one approach
 - False positives
 - Specific strength of a particular method
- ◆ Requires (some) manual curation
 - Biologists must be involved



Limited overlap among approaches

◆ Lexical vs. non-lexical

◆ Among non-lexical

[Bodenreider & al., PSB, 2005]

Reusing thesauri

- ◆ First approximation for taxonomic relations
 - No need for creating taxonomies from scratch in biomedicine
- ◆ Beware of purpose-dependent relations
 - Addison's disease isa Autoimmune disorder
- ◆ Relations used to create hierarchies vs. hierarchical relations
- ◆ Requires (some) manual curation

[Wroe & al., PSB, 2003] [Hahn & al., PSB, 2003]

Formal vs. Casual

- ◆ Formal ontology
 - Provides a framework for building sound ontologies
 - Too labor-intensive for building large ontologies
- Casual ontology
 - Usually unsuitable for reasoning
 - Tools for automatic acquisition available

What is *not* useful

- Formal ontology = righteous
- Casual ontology = sloppy

Formal and Casual

- ◆ Formal ontology
 - Provides a framework which can be used as a reference
 - Help us think clearly (?) about
 - Concepts
 - Relations (e.g., isa: is a kind of / is an instance of)
- Casual ontology
 - Supported by "cheap" (but formal) methods
 - Extracted from large amounts of data
 - Helps populating the framework from formal ontology

Combining formal and casual

Formal ontology

- Provides a framework for building sound ontologies
- Too labor-intensive for building large ontologies
- Can benefit from loosely defined ontologies

Casual ontology


- Usually unsuitable for reasoning
- Tools for automatic acquisition available
- Can benefit from formal ontology
 - Organization
 - Validation

Casual ontology as a bridge

- Casual ontology
 - Speaks the language of biologists
 - Extracted from text or terminologies
 - Passes (part of) the rigorous framework of formal ontology on to biologists
- Casual ontologist
 - Not a sloppy ontologist
 - Uses the formal methods of casual ontology
 - Mediator between formal ontology and biology

Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: mor.nlm.nih.gov

Olivier Bodenreider

Lister Hill National Center for Biomedical Communications Bethesda, Maryland - USA